2269 դիտում
23:03 10-12-2021
Արհեստական բանականությունը և տվյալագիտությունը՝ ՀՀ ԳԱԱ մաթեմատիկայի ինստիտուտի ուշադրության կենտրոնում
ՀՀ գիտությունների ազգային ակադեմիայի մաթեմատիկայի ինստիտուտի արդիական թեմաներից է «Արհեստական բանականությունը և տվյալագիտությունը», որը շահել է ՀՀ կրթության, գիտության, մշակույթի և սպորտի նախարարության Գիտության կոմիտեի հայտարարած մրցույթը: Թեմայի ղեկավար, ինստիտուտի գիտաշխատող Առնակ Պողոսյանը կարևորում է մեքենայական ուսուցման (ՄՈՒ) և արհեստական բանականության (ԱԲ) խնդիրները. «Հիմնական շարժիչ ուժը տեղեկատվական տեխնոլոգիաների ոլորտի ընկերություններն են: Այս ընկերությունների արտադրանքի գերակշիռ մասը պահանջում է խելամիտ լուծումներ, որոնք մեծ տվյալների առկայության պայմաններում հնարավոր չէ իրականացնել առանց մեքենայական ուսուցման և արհեստական բանականության մեթոդների ներգրավվածության: Մեր խմբի հինգ անդամներից երեքն աշխատում են աշխարհահռչակ ՏՏ ընկերություններում (VMware, Inc., ԱՄՆ, ServiceTitan, ԱՄՆ)»:
Առնակ Պողոսյանը նշեց, որ այս թեմայի հիմնական աշխատանքները վերաբերում են ամպային ենթակառուցվածքների և նրանցում աշխատող ծրագրերի աշխատանքի մոնիտորինգին, կանոնավոր աշխատանքի պահպանմանը և առաջացած պրոբլեմների հաղթահարմանը: «Բիզնեսի տեսանկյունից շատ կարևոր է ամպային տիրույթների նորմալ աշխատանքը, քանի որ նրանց անկանոն աշխատանքը բերելու է ֆինանսական և վստահության կորստի: Ծրագրերի անխափան աշխատանքի ապահովումը հնարավոր է ամպային համակարգերում ընթացող պրոցեսների մոնիտորինգով, որի արդյունքում հավաքվում և պահվում են տվյալներ` հետագա մշակման համար: Ներկայիս ամպային համակարգերը շատ բարդ են, և դրանց պատասխանատուներն ի վիճակի չեն հետևելու և հասկանալու նրանցում ընթացող պրոցեսները, արագ արձագանքելու խնդիրներին: Անհրաժեշտ են խելացի լուծումներ՝ հիմնված արհեստական բանականության մեթոդների վրա», - ասաց Առնակ Պողոսյանը:
Ըստ նրա՝ դասական մոնիտորինգն ունի երեք հենասյուներ` տվյալների տեսակներ, որոնց հավաքելն անհրաժեշտ է ամպային ենթակառուցվածքներում և ծրագրերում ընթացող պրոցեսների բացահայտման համար: Տվյալների յուրաքանչյուր տեսակ դիտարկում է ամպային համակարգը որոշակի անկյան տակ` ամբողջական պատկերը բացահայտելու համար: «Հենասյուներից մեկը ժամանակային շարքերն են (time series data), որոնք նկարագրում են պրոցեսների վարքը ժամանակի ընթացքում: Ժամանակային շարքերը բազմաթիվ հարցերի պատասխաններ կարող են տալ: Կարևոր է ուսումնասիրել նրանց պարբերականությունը, թրենդը, հասկանալ շարքերի վարքագիծը և կատարել կանխատեսումներ, անհանգստություն արտահայտել` «ալերթ» (trigger alert/alarm/event), երբ այն շեղվում է կանոնավոր վարքագծից, ուսումնասիրել բաշխումները, ընդհանրապես արձանագրել ցանկացած փոփոխություն (change detection), որը որևէ ձևով արտահայտում է համակարգի հնարավոր խափանումը: Ժամանակային շարքերը կարելի է նաև ուսումնասիրել խմբերով, հասկանալ նրանց կորելիացիաները՝ հատկապես որոշակի պրոբլեմների դեպքում, պարզել կարևոր և անկարևոր խմբերը, իրականացնել բազմաչափ կանխատեսումներ: Էական է հասկանալ տարբեր ժամանակային շարքերից ստացված «ալերթների» կորելացիաները, որոնք կավելացնեն խափանումների վերաբերյալ մեր տեղեկությունները՝ օգնելով ավելի ավարտուն նկարագրել դրանք` դյուրինացնելով վերականգնման գործընթացը», - ասաց Առնակ Պողոսյանը:
Նա նշեց, որ ժամանակակից ծրագրերի մոնիտորինգը, որոնք բաշխված են ամպային տիրույթներում, բավական խճճված գործընթաց է, որի համար պահանջվում են խելացի տեխնոլոգիաներ: Այդպիսին է ծրագրի աշխատանքի հետքերի (application traces) մոնիտորինգը, որը հանդիսանում է դասական մոնիտորինգի երկրորդ հենասյունը: Ծրագրի հետքը դրա աշխատանքային պրոցեսի նկարագիրն է` ըստ ենթապրոցեսների հերթականության: Այն ցույց է տալիս բոլոր ենթապրոցեսների տևողությունները և այլ մանրամասներ, որոնց միջոցով կարելի է պարզել աշխատանքի կանոնավոր և վթարային ընթացքները: Արհեստական բանականության խնդիրն է հասկանալ, կանխատեսել կամ բացատրել ենթապրոցեսներից որևէ մեկի խափանումը, որը կազդի ծրագրի ամբողջ աշխատանքի վրա:
«Մոնիտորինգի երրորդ հենասյունը ծրագրի լոգերն են (log data, logging)՝ կարճ հաղորդագրությունները ծրագրի կատարման տարբեր օղակների վերաբերյալ, որոնցով կարելի է իրականացնել դիագնոստիկա խափանումները հասկանալու համար: Լոգերը գեներացվում են ծրագրի աշխատանքի ընթացքում և պահվում են առանձին ֆայլերում, որոնք անհրաժեշտության դեպքում կարելի է ուսումնասիրել: Հաշվի առնելով դրանց ծավալները` ոչ մի ադմինիստրատոր ֆիզիկապես չի կարող դրանք կարդալ և վերլուծել: Անհրաժեշտ են խելացի և ինքնուրույն աշխատող ալգորիթմներ: Մեքենայական ուսուցման ալգորիթմները փորձում են լոգերի օգնությամբ հասկանալ կանոնավոր աշխատանքի օրինաչափությունները, պարզել խափանումները, և դրանց դեպքում գտնել բացատրություններ` արագ վերացնելու համար», - ասաց Առնակ Պողոսյանը:
Նրա խոսքով՝ բոլոր հավաքված տվյալները ծառայում են մեկ ընդհանուր նպատակի՝ հայտնաբերել կամ կանխատեսել համակարգի խնդիրները, որոնք բացասաբար են ազդելու վերջնական օգտագործողների վրա, և բացատրել դրանք մարդուն հասկանալի լեզվով` վթարները արագ վերացնելու կամ կանխելու նպատակով: Ցանկալի է նաև խնդիրների վերացման պրոցեսների ավտոմատացումը` առանց մարդու միջամտության: Դրա համար կարևոր են երևույթների պատճառահետևանքային կապերը: Խնդիրների շտկման համար շատ կարևոր է գտնել այն հիմնական պատճառը (root cause), որից սկսվել են համակարգի մնացած պրոբլեմները` առկա խնդիրները լուծելու կամ նորերից խուսափելու համար: Իր հերթին սա նշանակում է, որ մեքենայական ուսուցման և արհեստական բանականության ալգորիթմների պատասխանները պետք է որոշակի բացատրելիություն ապահովեն: «Մեքենայական ուսուցման ալգորիթմները երկու հիմնական առաջադրանք են կատարում` տվյալների կանխատեսում և բացատրում: Կախված կիրառություններից՝ կամ կարևորվում է դրանցից որևէ մեկը, կամ երկուսն էլ: Ընդհանուր առմամբ, այս երկու խնդիրներն իրար հակասող են: Կան ալգորիթմներ կանխատեսման շատ մեծ հնարավորություններով, ինչպիսիք են խորը ուսուցման մեթոդները, որոնք ունեն բացատրելիության շատ ցածր մակարդակ: Այս մեթոդները հայտնի են ինչպես սև արկղեր՝ հատկապես նշելու համար, որ դրանց տրված պատասխանների աղբյուրը մեզ անհասկանալի է, տեսանելի է միայն տվյալների մուտքը և ելքը: Մյուս կողմից հայտնի են ալգորիթմներ բացատրելիության շատ բարձր մակարդակով, ինչպիսին են ծառերը (decision trees) և կանոններ սովորող մեթոդները (rule induction methods), որոնք իրենց կանխատեսման հզորությամբ չեն կարող մրցել խորը ուսուցման ալգորիթմների հետ: Նման մեթոդները հայտնի են ինչպես սպիտակ արկղեր, որով ցանկանում են շեշտել, որ նրանց աշխատանքի ընթացքը լիովին տեսանելի է», - բացատրեց Առնակ Պողոսյանը:
Այժմ առանձնահատուկ կարևորության է արժանանում բացատրելի արհեստական բանականությունը: Մեքենայական ուսուցման ալգորիթմներ օգտագործողների գերակշռող մասը համարում է, որ պետք չէ կուրորեն վստահել արհեստական բանականության կանխատեսումներին` առանց հասկանալու դրանց առաջացման տրամաբանությունը: Բացատրելիությունը վստահություն է հաղորդում լուծումների նկատմամբ, քանի որ բացահայտում է դրանց առաջացման պրոցեսը: Բացատրելի արհեստական բանականությունը կարող է անփոխարինելի դեր ունենալ բժշկությունում, ֆինանսներում և այլուր:
Ստացված արդյունքների մի մասը տպագրվել է Sensors ամսագրում (https://www.mdpi.com/1424-8220/21/5/1590):
ՀՀ ԳԱԱ տեղեկատվական-վերլուծական ծառայություն
Առնակ Պողոսյանը նշեց, որ այս թեմայի հիմնական աշխատանքները վերաբերում են ամպային ենթակառուցվածքների և նրանցում աշխատող ծրագրերի աշխատանքի մոնիտորինգին, կանոնավոր աշխատանքի պահպանմանը և առաջացած պրոբլեմների հաղթահարմանը: «Բիզնեսի տեսանկյունից շատ կարևոր է ամպային տիրույթների նորմալ աշխատանքը, քանի որ նրանց անկանոն աշխատանքը բերելու է ֆինանսական և վստահության կորստի: Ծրագրերի անխափան աշխատանքի ապահովումը հնարավոր է ամպային համակարգերում ընթացող պրոցեսների մոնիտորինգով, որի արդյունքում հավաքվում և պահվում են տվյալներ` հետագա մշակման համար: Ներկայիս ամպային համակարգերը շատ բարդ են, և դրանց պատասխանատուներն ի վիճակի չեն հետևելու և հասկանալու նրանցում ընթացող պրոցեսները, արագ արձագանքելու խնդիրներին: Անհրաժեշտ են խելացի լուծումներ՝ հիմնված արհեստական բանականության մեթոդների վրա», - ասաց Առնակ Պողոսյանը:
Ըստ նրա՝ դասական մոնիտորինգն ունի երեք հենասյուներ` տվյալների տեսակներ, որոնց հավաքելն անհրաժեշտ է ամպային ենթակառուցվածքներում և ծրագրերում ընթացող պրոցեսների բացահայտման համար: Տվյալների յուրաքանչյուր տեսակ դիտարկում է ամպային համակարգը որոշակի անկյան տակ` ամբողջական պատկերը բացահայտելու համար: «Հենասյուներից մեկը ժամանակային շարքերն են (time series data), որոնք նկարագրում են պրոցեսների վարքը ժամանակի ընթացքում: Ժամանակային շարքերը բազմաթիվ հարցերի պատասխաններ կարող են տալ: Կարևոր է ուսումնասիրել նրանց պարբերականությունը, թրենդը, հասկանալ շարքերի վարքագիծը և կատարել կանխատեսումներ, անհանգստություն արտահայտել` «ալերթ» (trigger alert/alarm/event), երբ այն շեղվում է կանոնավոր վարքագծից, ուսումնասիրել բաշխումները, ընդհանրապես արձանագրել ցանկացած փոփոխություն (change detection), որը որևէ ձևով արտահայտում է համակարգի հնարավոր խափանումը: Ժամանակային շարքերը կարելի է նաև ուսումնասիրել խմբերով, հասկանալ նրանց կորելիացիաները՝ հատկապես որոշակի պրոբլեմների դեպքում, պարզել կարևոր և անկարևոր խմբերը, իրականացնել բազմաչափ կանխատեսումներ: Էական է հասկանալ տարբեր ժամանակային շարքերից ստացված «ալերթների» կորելացիաները, որոնք կավելացնեն խափանումների վերաբերյալ մեր տեղեկությունները՝ օգնելով ավելի ավարտուն նկարագրել դրանք` դյուրինացնելով վերականգնման գործընթացը», - ասաց Առնակ Պողոսյանը:
Նա նշեց, որ ժամանակակից ծրագրերի մոնիտորինգը, որոնք բաշխված են ամպային տիրույթներում, բավական խճճված գործընթաց է, որի համար պահանջվում են խելացի տեխնոլոգիաներ: Այդպիսին է ծրագրի աշխատանքի հետքերի (application traces) մոնիտորինգը, որը հանդիսանում է դասական մոնիտորինգի երկրորդ հենասյունը: Ծրագրի հետքը դրա աշխատանքային պրոցեսի նկարագիրն է` ըստ ենթապրոցեսների հերթականության: Այն ցույց է տալիս բոլոր ենթապրոցեսների տևողությունները և այլ մանրամասներ, որոնց միջոցով կարելի է պարզել աշխատանքի կանոնավոր և վթարային ընթացքները: Արհեստական բանականության խնդիրն է հասկանալ, կանխատեսել կամ բացատրել ենթապրոցեսներից որևէ մեկի խափանումը, որը կազդի ծրագրի ամբողջ աշխատանքի վրա:
«Մոնիտորինգի երրորդ հենասյունը ծրագրի լոգերն են (log data, logging)՝ կարճ հաղորդագրությունները ծրագրի կատարման տարբեր օղակների վերաբերյալ, որոնցով կարելի է իրականացնել դիագնոստիկա խափանումները հասկանալու համար: Լոգերը գեներացվում են ծրագրի աշխատանքի ընթացքում և պահվում են առանձին ֆայլերում, որոնք անհրաժեշտության դեպքում կարելի է ուսումնասիրել: Հաշվի առնելով դրանց ծավալները` ոչ մի ադմինիստրատոր ֆիզիկապես չի կարող դրանք կարդալ և վերլուծել: Անհրաժեշտ են խելացի և ինքնուրույն աշխատող ալգորիթմներ: Մեքենայական ուսուցման ալգորիթմները փորձում են լոգերի օգնությամբ հասկանալ կանոնավոր աշխատանքի օրինաչափությունները, պարզել խափանումները, և դրանց դեպքում գտնել բացատրություններ` արագ վերացնելու համար», - ասաց Առնակ Պողոսյանը:
Նրա խոսքով՝ բոլոր հավաքված տվյալները ծառայում են մեկ ընդհանուր նպատակի՝ հայտնաբերել կամ կանխատեսել համակարգի խնդիրները, որոնք բացասաբար են ազդելու վերջնական օգտագործողների վրա, և բացատրել դրանք մարդուն հասկանալի լեզվով` վթարները արագ վերացնելու կամ կանխելու նպատակով: Ցանկալի է նաև խնդիրների վերացման պրոցեսների ավտոմատացումը` առանց մարդու միջամտության: Դրա համար կարևոր են երևույթների պատճառահետևանքային կապերը: Խնդիրների շտկման համար շատ կարևոր է գտնել այն հիմնական պատճառը (root cause), որից սկսվել են համակարգի մնացած պրոբլեմները` առկա խնդիրները լուծելու կամ նորերից խուսափելու համար: Իր հերթին սա նշանակում է, որ մեքենայական ուսուցման և արհեստական բանականության ալգորիթմների պատասխանները պետք է որոշակի բացատրելիություն ապահովեն: «Մեքենայական ուսուցման ալգորիթմները երկու հիմնական առաջադրանք են կատարում` տվյալների կանխատեսում և բացատրում: Կախված կիրառություններից՝ կամ կարևորվում է դրանցից որևէ մեկը, կամ երկուսն էլ: Ընդհանուր առմամբ, այս երկու խնդիրներն իրար հակասող են: Կան ալգորիթմներ կանխատեսման շատ մեծ հնարավորություններով, ինչպիսիք են խորը ուսուցման մեթոդները, որոնք ունեն բացատրելիության շատ ցածր մակարդակ: Այս մեթոդները հայտնի են ինչպես սև արկղեր՝ հատկապես նշելու համար, որ դրանց տրված պատասխանների աղբյուրը մեզ անհասկանալի է, տեսանելի է միայն տվյալների մուտքը և ելքը: Մյուս կողմից հայտնի են ալգորիթմներ բացատրելիության շատ բարձր մակարդակով, ինչպիսին են ծառերը (decision trees) և կանոններ սովորող մեթոդները (rule induction methods), որոնք իրենց կանխատեսման հզորությամբ չեն կարող մրցել խորը ուսուցման ալգորիթմների հետ: Նման մեթոդները հայտնի են ինչպես սպիտակ արկղեր, որով ցանկանում են շեշտել, որ նրանց աշխատանքի ընթացքը լիովին տեսանելի է», - բացատրեց Առնակ Պողոսյանը:
Այժմ առանձնահատուկ կարևորության է արժանանում բացատրելի արհեստական բանականությունը: Մեքենայական ուսուցման ալգորիթմներ օգտագործողների գերակշռող մասը համարում է, որ պետք չէ կուրորեն վստահել արհեստական բանականության կանխատեսումներին` առանց հասկանալու դրանց առաջացման տրամաբանությունը: Բացատրելիությունը վստահություն է հաղորդում լուծումների նկատմամբ, քանի որ բացահայտում է դրանց առաջացման պրոցեսը: Բացատրելի արհեստական բանականությունը կարող է անփոխարինելի դեր ունենալ բժշկությունում, ֆինանսներում և այլուր:
Ստացված արդյունքների մի մասը տպագրվել է Sensors ամսագրում (https://www.mdpi.com/1424-8220/21/5/1590):
ՀՀ ԳԱԱ տեղեկատվական-վերլուծական ծառայություն
Նմանատիպ նյութեր
1266 դիտում
18:18 20-11-2019
ՀՀ ԳԱԱ Մաթեմատիկայի ինստիտուտի տնօրենի պաշտոնում ընտրվել է Գրիգորի Կարագուլյանը
Այս բաժնից
10492 դիտում
17:45 30-10-2024
Անդո՛, նստելու ես «խիյարը թարս բուսնեց»․ Շահինյանը հոկտեմբերի 27-ից փակագծեր բացեց. Hayeli.am